1 research outputs found

    Time-Synchronized Full System State Estimation Considering Practical Implementation Challenges

    Full text link
    As phasor measurement units (PMUs) are usually placed on the highest voltage buses, many lower voltage levels of the bulk power system are not observed by them. This lack of visibility makes time-synchronized state estimation of the full system a challenging problem. We propose a Deep Neural network-based State Estimator (DeNSE) to overcome this problem. The DeNSE employs a Bayesian framework to indirectly combine inferences drawn from slow timescale but widespread supervisory control and data acquisition (SCADA) data with fast timescale but local PMU data to attain sub-second situational awareness of the entire system. The practical utility of the proposed approach is demonstrated by considering topology changes, non-Gaussian measurement noise, and bad data detection and correction. The results obtained using the IEEE 118-bus system show the superiority of the DeNSE over a purely SCADA state estimator, a SCADA-PMU hybrid state estimator, and a PMU-only linear state estimator from a techno-economic viability perspective. Lastly, the scalability of the DeNSE is proven by performing state estimation on a large and realistic 2000-bus Synthetic Texas system
    corecore